Corrosión de titanio y acero quirúrgico en presencia de bacterias orales.
Resumen
Palabras clave
Referencias
Pozhitkov A.E, Daubert D., Donimirski A. B., Goodgion D., Vagin M.Y., Leroux B.G., Hunter C.M., Flemming T.F., Noble P.A. y Bryers J.D. (2015). Interruption of electrical conductivity of titanium dental implants suggests a path towards elimination of corrosion. PLoSOne, 10(10).
Bhola R., Bhola S.M., Mishra B. Y OlsonD.L..(2010) Corrossion In Titanium Dental Implants/Protheses – A Review. Trends Biomater. Artif. Organs, 25(1), 34-46.
Lima B.P., Shi W. y Lux R. (2016). Identification and Characterization of a novel Fusobacterium nucleatumahesin involved in physical interaction and biofilm formation with Streptococcus gordonii. Microbiologyopen 6(444).
Sanz M., Blanc V., León R., Herrera D., Llama A., y Sánchez M.C. (2011). Structure, Viability, And Bacterial Kinetics Of An In Vitro Biofilm Model Using Six Bacteria From The Subgingival Microbiota. J. Periodont. Res.
ASTM G59-97(2014), Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements, ASTM International, West Conshohocken, PA, 2014, www.astm.org.
ASTM G5-14, Standard Reference Test Method for Making Potentiodynamic Anodic Polarization Measurements, ASTM International, West Conshohocken, PA, 2014, www.astm.org.
ASTM, International, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2, ASM. International, Editor. 1992, ASM International: Ohio, EUA. p. 137.
Grosgogeat, B., Reclaru, L., Lissac, M., & Dalard, F. (1999). Measurement and evaluation of galvanic corrosion between titanium/Ti6Al4V implants and dental alloys by electrochemical techniques and auger spectrometry. Biomaterials, 20(10), 933-941. doi: https://doi.org/10.1016/S0142-9612(98)00248-8.
ISSN: 2007-9052
Http:www.remexesto.com